

requests-staticmock

[image: _images/requests-staticmock.svg]
 [https://pypi.python.org/pypi/requests-staticmock][image: _images/requests-staticmock1.svg]
 [https://travis-ci.org/tonybaloney/requests-staticmock][image: Documentation Status]
 [https://readthedocs.org/projects/requests-staticmock/?badge=latest][image: _images/badge.svg]
 [https://coveralls.io/github/tonybaloney/requests-staticmock?branch=master][image: Updates]
 [https://pyup.io/repos/github/tonybaloney/requests-staticmock/][image: Python 3]
 [https://pyup.io/repos/github/tonybaloney/requests-staticmock/]A static HTTP mock interface for testing classes that leverage Python requests with no monkey patching!

	Free software: Apache 2 License

	Documentation: https://requests-staticmock.readthedocs.org.

Usage

As a context manager for requests Session instances

	
requests_staticmock.context.mock_session_with_fixtures(*args, **kwds)

	Context Manager

Mock the responses with a particular session
to any files found within a static path

	Parameters

	
	session (requests.Session) – The requests session object

	path (str) – The path to the fixtures

	url (str or list) – The base URL to mock, e.g. http://mock.com, http://
supports a single URL or a list

Example

import requests
import requests_staticmock

session = requests.Session()
with requests_staticmock.mock_session_with_fixtures(session, 'tests/fixtures', 'http://test_context.com'):
 # will return a response object with the contents of tests/fixtures/test.json
 response = new_session.request('get', 'http://test_context.com/test.json')

As an adapter

You can inject the requests_staticmock adapter into an existing (or new) requests session to mock out a particular URL
or domain, e.g.

import requests
from requests_staticmock import Adapter

session = requests.Session()
special_adapter = Adapter('fixtures')
session.mount('http://specialwebsite.com', special_adapter)
session.request('http://normal.com/api/example') # works as normal
session.request('http://specialwebsite.com') # returns static mocks

Class adapter

Instead of using a static asset adapter, you can use an adapter that expects an internal method to respond with a string, e.g.

GET /test/example.xml will call method _test_example_xml(self, request)

GET /test/example.xml?query=param will call method _test_example_xml(self, request)

This can be used via requests_staticmock.ClassAdapter or the context manager

	
requests_staticmock.context.mock_session_with_class(*args, **kwds)

	Context Manager

Mock the responses with a particular session
to any private methods for the URLs

	Parameters

	
	session (requests.Session) – The requests session object

	cls (object) – The class instance with private methods for URLs

	url (str or list) – The base URL to mock, e.g. http://mock.com, http://
supports a single URL or a list

Example

import requests
import requests_staticmock

class MyTestClass(requests_staticmock.BaseMockClass):
 def _api_v1_idea(self, request):
 return "woop woop"

session = requests.Session()
with requests_staticmock.mock_session_with_class(session, MyTestClass, 'http://test_context.com'):
 # will return a response object with the contents 'woop woop'
 response = new_session.request('get', 'http://test_context.com/api/v1/idea')

Class adapter with unpacked requests

The class adapter supports unpacking of the following components, just add these keyword arguments
to your callback methods and the class adapter will match them to the arguments.

	method - The HTTP verb, e.g. GET

	url - The full URL

	params - The dict with the request parameters

	headers - The request headers

	body - The request body text

import requests
import requests_staticmock

class_session = Session()
class TestMockClass(BaseMockClass):
 def _api_v1_idea(self, method, params, headers):
 if params['special'] == 'value':
 return 'yes'
 def _api_v1_brillo(self, url, body):
 if json.loads(body)['special'] == 'value':
 return 'yes'

a = ClassAdapter(TestMockClass)

session = requests.Session()
with requests_staticmock.mock_session_with_class(session, MyTestClass, 'http://test_context.com'):
 response = new_session.request('get', 'http://test_context.com/api/v1/idea')

See StaticResponseFactory for simple ways of returning good and bad responses.

	
class requests_staticmock.responses.StaticResponseFactory

	Static factory for producing internal instances of requests
Response objects

	
static BadResponse(body, request, status_code=None, headers=None)

	Construct a Bad HTTP response (defined in DEFAULT_BAD_RESPONSE_CODE)

	Parameters

	
	body (str) – The body of the response

	request (requests.Request) – The HTTP request

	status_code (int) – The return status code, defaults
to DEFAULT_GOOD_STATUS_CODE if not specified

	headers (dict) – Response headers, defaults to
DEFAULT_RESPONSE_HEADERS if not specified

	Return type

	requests.Response

	Returns

	a Response object

	
static GoodResponse(body, request, status_code=None, headers=None)

	Construct a Good HTTP response (defined in DEFAULT_GOOD_RESPONSE_CODE)

	Parameters

	
	body (str) – The body of the response

	request (requests.Request) – The HTTP request

	status_code (int) – The return status code, defaults
to DEFAULT_GOOD_STATUS_CODE if not specified

	headers (dict) – Response headers, defaults to
DEFAULT_RESPONSE_HEADERS if not specified

	Return type

	requests.Response

	Returns

	a Response object

Features

	Allow mocking of HTTP responses via a directory of static fixtures

	Support for sub-directories matching URL paths

Credits

This project takes inspiration and ideas from the requests_mock package, maintained by the OpenStack foundation. I redesigned this based on the abstractions within the requests project instead of using the
patching pattern used in requests_mock. I find the responses more native, easier to work with and also the ability to load static files much easier.

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Contents:

	API Reference
	Adapter Module

	Context Managers

	Response Factory

	Usage
	As a context manager for requests Session instances

	As an adapter

	Class adapter

	Class adapter with unpacked requests

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	1.4.0 (2017-09-01)

	1.3.0 (2017-09-01)

	1.2.0 (2017-05-10)

	1.1.0 (2017-05-10)

	0.8.0 (2017-02-02)

	0.7.0 (2017-01-29)

	0.6.0 (2017-01-29)

	0.3.0 (2017-01-29)

	0.2.0 (2017-01-28)

	0.1.0 (2017-01-01)

	Index

	Module Index

	Search Page

API Reference

Adapter Module

	
class requests_staticmock.adapter.Adapter(base_path=None)

	A replacement session adapter that responds with the content
of static files matching the path of the requested URL

	
close()

	Cleans up adapter specific items.

	
match_url(request)

	Match the request against a file in the adapter directory

	Parameters

	request (requests.Request) – The request

	Returns

	Path to the file

	Return type

	str

	
register_path(path)

	Register a new search path

	Parameters

	path (str) – The new search path

	
response_from_fixture(request, fixture_path)

	

	
send(request, **kwargs)

	Sends PreparedRequest object. Returns Response object.

	Parameters

	
	request – The PreparedRequest being sent.

	stream – (optional) Whether to stream the request content.

	timeout (float or tuple) – (optional) How long to wait for the server to send
data before giving up, as a float, or a (connect timeout,
read timeout) tuple.

	verify – (optional) Either a boolean, in which case it controls whether we verify
the server’s TLS certificate, or a string, in which case it must be a path
to a CA bundle to use

	cert – (optional) Any user-provided SSL certificate to be trusted.

	proxies – (optional) The proxies dictionary to apply to the request.

	
class requests_staticmock.adapter.ClassAdapter(cls)

	A requests Adapter for a class that has methods matching the
URLS, e.g. def _api_v1_test() would be called for
session.get(‘api/v1/test’)

	
send(request, **kwargs)

	Sends PreparedRequest object. Returns Response object.

	Parameters

	
	request – The PreparedRequest being sent.

	stream – (optional) Whether to stream the request content.

	timeout (float or tuple) – (optional) How long to wait for the server to send
data before giving up, as a float, or a (connect timeout,
read timeout) tuple.

	verify – (optional) Either a boolean, in which case it controls whether we verify
the server’s TLS certificate, or a string, in which case it must be a path
to a CA bundle to use

	cert – (optional) Any user-provided SSL certificate to be trusted.

	proxies – (optional) The proxies dictionary to apply to the request.

Context Managers

	
requests_staticmock.context.mock_session_with_class(*args, **kwds)

	Context Manager

Mock the responses with a particular session
to any private methods for the URLs

	Parameters

	
	session (requests.Session) – The requests session object

	cls (object) – The class instance with private methods for URLs

	url (str or list) – The base URL to mock, e.g. http://mock.com, http://
supports a single URL or a list

	
requests_staticmock.context.mock_session_with_fixtures(*args, **kwds)

	Context Manager

Mock the responses with a particular session
to any files found within a static path

	Parameters

	
	session (requests.Session) – The requests session object

	path (str) – The path to the fixtures

	url (str or list) – The base URL to mock, e.g. http://mock.com, http://
supports a single URL or a list

Response Factory

	
class requests_staticmock.responses.StaticResponseFactory

	Static factory for producing internal instances of requests
Response objects

	
static BadResponse(body, request, status_code=None, headers=None)

	Construct a Bad HTTP response (defined in DEFAULT_BAD_RESPONSE_CODE)

	Parameters

	
	body (str) – The body of the response

	request (requests.Request) – The HTTP request

	status_code (int) – The return status code, defaults
to DEFAULT_GOOD_STATUS_CODE if not specified

	headers (dict) – Response headers, defaults to
DEFAULT_RESPONSE_HEADERS if not specified

	Return type

	requests.Response

	Returns

	a Response object

	
static GoodResponse(body, request, status_code=None, headers=None)

	Construct a Good HTTP response (defined in DEFAULT_GOOD_RESPONSE_CODE)

	Parameters

	
	body (str) – The body of the response

	request (requests.Request) – The HTTP request

	status_code (int) – The return status code, defaults
to DEFAULT_GOOD_STATUS_CODE if not specified

	headers (dict) – Response headers, defaults to
DEFAULT_RESPONSE_HEADERS if not specified

	Return type

	requests.Response

	Returns

	a Response object

Usage

As a context manager for requests Session instances

The requests_staticmock

import requests
import requests_staticmock

session = requests.Session()
with requests_staticmock.mock_session_with_fixtures(session, 'tests/fixtures', 'http://test_context.com'):
 # will return a response object with the contents of tests/fixtures/test.json
 response = new_session.request('get', 'http://test_context.com/test.json')

As an adapter

You can inject the requests_staticmock adapter into an existing (or new) requests session to mock out a particular URL
or domain, e.g.

import requests
from requests_staticmock import Adapter

session = requests.Session()
special_adapter = Adapter('fixtures')
session.mount('http://specialwebsite.com', special_adapter)
session.request('http://normal.com/api/example') # works as normal
session.request('http://specialwebsite.com') # returns static mocks

Class adapter

Instead of using a static asset adapter, you can use an adapter that expects an internal method to respond with a string, e.g.

GET /test/example.xml will call method _test_example_xml(self, request)

GET /test/example.xml?query=param will call method _test_example_xml(self, request)

This can be used via requests_staticmock.ClassAdapter or the context manager

import requests
import requests_staticmock

class MyTestClass(requests_staticmock.BaseMockClass):
 def _api_v1_idea(self, request):
 return "woop woop"

session = requests.Session()
with requests_staticmock.mock_session_with_class(session, MyTestClass, 'http://test_context.com'):
 # will return a response object with the contents 'woop woop'
 response = new_session.request('get', 'http://test_context.com/api/v1/idea')

Class adapter with unpacked requests

The class adapter supports unpacking of the following components, just add these keyword arguments
to your callback methods and the class adapter will match them to the arguments.

	method - The HTTP verb, e.g. GET

	url - The full URL

	params - The dict with the request parameters

	headers - The request headers

	body - The request body text

import requests
import requests_staticmock

class_session = Session()
class TestMockClass(BaseMockClass):
 def _api_v1_idea(self, method, params, headers):
 if params['special'] == 'value':
 return 'yes'
 def _api_v1_brillo(self, url, body):
 if json.loads(body)['special'] == 'value':
 return 'yes'

a = ClassAdapter(TestMockClass)

session = requests.Session()
with requests_staticmock.mock_session_with_class(session, MyTestClass, 'http://test_context.com'):
 response = new_session.request('get', 'http://test_context.com/api/v1/idea')

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/tonybaloney/requests-staticmock/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

requests-staticmock could always use more documentation, whether as part of the
official requests-staticmock docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/tonybaloney/requests-staticmock/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up requests-staticmock for local development.

	Fork the requests-staticmock repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/requests-staticmock.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv requests-staticmock
$ cd requests-staticmock/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 requests-staticmock tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/tonybaloney/requests-staticmock/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_requests-staticmock

Credits

Development Lead

	Anthony Shaw <anthonyshaw@apache.org>

Contributors

None yet. Why not be the first?

History

1.4.0 (2017-09-01)

	Class adapter correctly maps - character to _ as - is invalid method name in Python

1.3.0 (2017-09-01)

	Add a property in MockClass for the adapter instance, helps when you want to respond
with static fixture data

1.2.0 (2017-05-10)

	Add support for case-insensitive file matching

1.1.0 (2017-05-10)

	Add support for query params being part of the file path

0.8.0 (2017-02-02)

	Add support for streaming requests and iter_content/iter_lines

0.7.0 (2017-01-29)

	Add support version unpacking, class adapters now support a range of keyword arguments,
provided in no particular order.

0.6.0 (2017-01-29)

	Add support for the class adapter methods to return either a string or
a response object

	Moved to Py.Test

0.3.0 (2017-01-29)

	Added a class adapter

0.2.0 (2017-01-28)

	Added a context manager for the static mocks

0.1.0 (2017-01-01)

	First release on PyPI.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 requests_staticmock	

 	
 	
 requests_staticmock.context	

Index

 A
 | B
 | C
 | G
 | M
 | R
 | S

A

 	
 	Adapter (class in requests_staticmock.adapter)

B

 	
 	BadResponse() (requests_staticmock.responses.StaticResponseFactory static method), [1]

C

 	
 	ClassAdapter (class in requests_staticmock.adapter)

 	
 	close() (requests_staticmock.adapter.Adapter method)

G

 	
 	GoodResponse() (requests_staticmock.responses.StaticResponseFactory static method), [1]

M

 	
 	match_url() (requests_staticmock.adapter.Adapter method)

 	
 	mock_session_with_class() (in module requests_staticmock.context), [1]

 	mock_session_with_fixtures() (in module requests_staticmock.context), [1]

R

 	
 	register_path() (requests_staticmock.adapter.Adapter method)

 	
 	requests_staticmock.context (module), [1], [2]

 	response_from_fixture() (requests_staticmock.adapter.Adapter method)

S

 	
 	send() (requests_staticmock.adapter.Adapter method)

 	(requests_staticmock.adapter.ClassAdapter method)

 	
 	StaticResponseFactory (class in requests_staticmock.responses), [1]

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 requests-staticmock

 		
 API Reference

 		
 Adapter Module

 		
 Context Managers

 		
 Response Factory

 		
 Usage

 		
 As a context manager for requests Session instances

 		
 As an adapter

 		
 Class adapter

 		
 Class adapter with unpacked requests

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 1.4.0 (2017-09-01)

 		
 1.3.0 (2017-09-01)

 		
 1.2.0 (2017-05-10)

 		
 1.1.0 (2017-05-10)

 		
 0.8.0 (2017-02-02)

 		
 0.7.0 (2017-01-29)

 		
 0.6.0 (2017-01-29)

 		
 0.3.0 (2017-01-29)

 		
 0.2.0 (2017-01-28)

 		
 0.1.0 (2017-01-01)

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

